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Abstract
MarCon (Market-based Constraints) applies market-based control to distributed constraint
problems. It offers a new approach to distributing constraint problems that avoids challenges
faced by current approaches in some problem domains, and it provides a systematic method for
applying markets to a wide array of problems. Constraint agents interact with one another via the
variable agents in which they have a common interest, using expressions of their preferences
over sets of assignments. Each variable integrates this information from the constraints interested
in it and provides feedback that enables the constraints to shrink their sets of assignments until
they converge on a solution. MarCon originated in a system for supporting human product
designers, and its mechanisms are particularly useful for applications integrating human and
machine intelligence to explore implicit constraints. MarCon has been tested in the domain of
mechanical design, in which its set-narrowing process is particularly useful.

1. Introduction
MarCon (Market-based Constraints) bridges two important areas of research in multi-agent
systems: distributed constraint optimization and market-based programming.

The classic constraint satisfaction problem (CSP) seeks assignments to a set of variables X = [xi,
X2, ... , Xmj from a set of corresponding domains, one per variable, D = [di, d2, ... , dm1, that ___Mb

satisfy a set C = [cl, C2, ..., c,] of relations over subsets of the Cartesian space spanned by D.
CSP is a binary problem. A set of assignments to the variables X either satisfies the constraints or
it does not. Many applications permit varying degrees of satisfaction, leading to the constraint
optimization problem (COP). CSP and COP can be distributed across computational agents in a
number of ways, leading to DCSP and DCOP, as discussed further in Section 7.

Distribution of a single computation across multiple agents raises problems of coordination. In
natural systems, agents often manage distributed constraints by sensing the gradients of
dissipative fields [17]. MarCon applies the dissipative forces of a marketplace to address such ill-
structured constraint problems.

There is considerable interest in applying market techniques to engineered environments [5]
(e.g., manufacturing scheduling [13] and product design [25]). Until now the design of a
marketplace to support a particular problem has been more of an art than a science. MarCon
offers a systematic way to apply markets to a large subset of constraint optimization problems. It
builds on the mapping established by [25] between market entities (consumers, producers with
technologies, goods) and the components of a distributed constraint problem (agents, constraints,
variables). In MarCon, individual constraint agents (humans in the current implementation) buy
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and sell assignments to variables among themselves, and market dynamics drive variable agents
to assignments that reflect the utilities of the various constraints.

Section 2 describes the kind of problems for which MarCon is particularly suited, and shows
how MarCon is configured for a specific problem. Section 3 outlines the behaviors of the
constraint and variable agents as the network runs. Section 4 defines qualitative market
representations for both ordered and unordered variable domains that support these agent
interactions. Section 5 offers a formal analysis of how local myopic decisions yield a globally
coherent solution. Section 6 reports experiments with the system. Section 7 discusses the
relations of MarCon and RAPPID with other research, and Section 8 summarizes the
significance of the approach.

2. Problem Set-Up and Execution
Given an appropriate problem, MarCon identifies variable agents, constraint agents, and
distinguished subsets of constraint agents that ground the network's utility and cost functions,
and then defines which constraint agents buy and sell which variable agents.

2.1. Problem Characteristics
MarCon generalizes techniques developed in the RAPPID project for distributed component-
centered design [18-21]. Some characteristics of this domain are desirable for the application of
MarCon, and if they are lacking, one might prefer alternative distributed constraint mechanisms.
Other characteristics reflect features of MarCon over other approaches.

Realized Constraints (Desirable).-In design, a system component constitutes an implicit
constraint among a subset of the design variables. MarCon is particularly appropriate for
domains in which a constraint is not just an abstract bundle of mathematical relations, but a
naturally bounded chunk of reality. Many conventional constraint problems (such as 3-SAT) are
formulated at a level of abstraction far removed from underlying domain specifics. MarCon is
most naturally mapped to entities in the underlying real-world problems.

Causality (Desirable).-The components in a design that are interested in the assignments to any
given variable (say, a motor and a transmission interested on the torque on the shaft between
them) can be divided into those that causally affect the assignment (the motor) and those that do
not (the transmission). When causality is present, MarCon uses it in defining which constraints
initially sell a given variable and which ones buy it. This notion of causality is intuitive rather
than formal. It helps human observers and participants understand the markets more easily.

Implicit Constraints (Feature).-Many design and planning domains do not provide explicit
analytic forms for constraints, and gathering empirical utility data may be expensive and time-
consuming. MarCon does not require explicit advance knowledge of the form of a constraint or
the associated utility values. MarCon can begin with only the knowledge of which variables are
involved in a constraint and very approximate knowledge of their individual utilities. During
operation, it discovers regions of the search space where more detailed exploration is worth the
time and expense.

Sparse Connectivity (Desirable).-Most variables in design are of interest to only a small subset
of the components, and each component is interested in only a small subset of the variables. This
sparseness limits the communication necessary through the constraint network, and permits
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effective distribution of work among agents. MarCon has less of an advantage in constraint
problems that do not exhibit this sparseness, such as bin packing.

Set-Based (Feature).-Most designers consider a series of point solutions, and must periodically
backtrack to escape dead-ends, making convergence difficult. MarCon is set based. Variables'
domains shrink monotonically over time from their initial full extents, collapsing on the solution
to the problem. The disciplined convergence thus guaranteed is more valuable in many industrial
contexts than the theoretical optimum that, in some contrived problems, may occasionally evade
it.

Carbon-Silicon Hybrids (Feature).-Much of the creative work of design must be done by
humans. Thus the network of agents that MarCon supports includes both carbon (human) and
silicon (computerized) agents. It is easier to integrate human participation into a MarCon-based
system than into many fully automated constraint-based mechanisms.

2.2. Kinds of Agents

A MarCon configuration is a network of alternating variables and constraints (Figure 1). Each
variable and each constraint is a separate agent. A constraint agent is interested in the
assignments to those variable agents to which it is adjacent. Constraint agents bid among
themselves to set the assignments of variable agents in which they are interested. Where there is
no danger of confusion, we use "constraint" for "constraint agent" and "variable" for "variable
agent." Potential assignments to a variable need not be numerical or even ordered.

Supplieri: C4 C3 V

SupUtility

SuppSuppleV3:
Constran aibes

Figure 1: An Example MarCon Network

Each constraint is a function from some subset of the variables to a utility. Given two sets of
assignments to the variables of interest to a constraint, the constraint prefers the set yielding the
higher utility. The dependency of a constraint's utility on its variables may be represented either
explicitly (by closed analytic form or enumeration) or implicitly (to be discovered through
search, or in the expertise of a human decision-maker). In design, most constraint agents are
humans, while most variable agents are computerized. A MarCon constraint estimates its utility
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as the difference between what it receives for variables that it sells and what it must pay for
variables that it buys.

A fundamental question in market-based programming is how to define the initial allocation of
resources. MarCon's answer is to ground both utilities and costs in distinguished constraints,
known as "customers" and "suppliers," respectively.

One or more customers have an interest in the overall outcome of the constraint optimization
problem. The distinguishing feature of a customer is that its utility does not depend on the utility
that other agents in the system place on variables to which the customer can make assignments.
Thus the customers ground the utility of the network. If there is only one customer, that agent
possesses a global utility function for the network, but the possibility of multiple customers
means that the system does not require such a global utility function. Even if there is only a
single customer, in a sparse network the market structure divides the task of estimating the global
utility among several other constraints.

One or more suppliers can cause some or all of the variables to assume specific assignments.
Each supplier owns (either explicitly or implicitly) a cost function over the possible values of the
variables to which it can make assignments. The distinguishing feature of a supplier is that this
cost function does not depend on the costs that other agents in the system attach to variables on
which the supplier may depend. Thus the suppliers ground the costs in the network.

As a MarCon network operates, utility flows from customers toward suppliers, and cost flows
from suppliers toward customers. Each constraint seeks to maximize the difference between the
utility it offers to its buyers and the cost it incurs from its sellers.

2.3. Identifying Buyers and Sellers

The MarCon network (Figure 1) must meet certain conditions. In many domains, a causal
heuristic helps identify configurations that meet these conditions.

The roles of agents as buyers or sellers for particular variables are fairly fluid, subject to the
following restrictions:

" Each variable must be of interest to at least two constraints, at least one that is a potential
buyer and at least one that is a potential seller. (Variables of interest only to a single
constraint are internal to that constraint and hidden from the market.)

" Each constraint must be either a buyer or a seller for each variable that it constrains. This role
may change over time.

" The initial buying and selling roles must be assigned so that if arrows are drawn from seller
to buyer as in Figure 1, every variable lies on a directed path from a supplier to a customer,
ensuring that each variable can be influenced both by the costs grounded in suppliers and by
the utilities grounded in customers.

It is intuitively helpful (but not necessary) to identify causal links between some system elements
and the assignments to some variables. For example, a motor and a transmission both have an
interest in the RPM and torque on the shaft between them, but the motor causes those
assignments, while the transmission only constrains them. In this case, the motor sells torque and
RPM, while the transmission buys assignments to these variables. Once clearly causal links are
identified, a stochastic search via percolation or spreading activation, beginning with customers
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and suppliers and spreading into the network, can identify paths and label buyers and sellers as
needed to permit flow along those paths.

3. Agent Behaviors
Constraint agents offer to buy or sell ranges of assignments to variables of interest to them, by
posting bids with the variables. Each variable compares the bids it receives from its constraints
and recommends how those constraints should shrink their ranges in converging toward a
solution.

3.1. What do Constraint Agents do?

A constraint expresses its interest in a variable by telling that variable:

1. Whether it wants to buy or sell the variable;

2. A range of assignments to the variable that it can accept;

3. A range of prices that it would be willing to pay (as buyer) or accept (as seller) for different
assignments in this range;

4. A description of the function of price over range of assignments;

5. Whether its offer is good for "any" or only for "one" of the possible assignments to the
variable.

Items 2 and 3 define a region of price/assignment space. The constraint that is issuing a bid
indicates how its price varies with assignment (item 4). In some domains (for example, catalog-
based design), this price function is known in great detail. In others, MarCon supports qualitative
indications of price shapes (as in Table 1).

Table 1: Price/Assignment Shape Indicators

/ Price increases with assignment
\ Price decreases as assignment increases
"A Price is maximum between extreme assignments

v Price is minimum between extreme assignments
Price is relatively, flat
Price/assignment relation is unspecifled

Ordinal variables such as weight or torque, whose potential assignments can be ordered, support
price/assignment ranges and qualitative price shapes. Another class of variables ("nominal
variables") does not support a natural ordering of potential assignments (e.g., the material out of
which a product should be made). Shape indicators are not meaningful for such variables.
MarCon uses directed acyclic graphs (DAG's) to record a constraint's preferences for nominal
variables. Section 4 discusses the definition and use of both price shapes and preference DAG's.

In Section 5, we show that if constraints compute their prices according to particular rules, their
local behavior yields a global maximum of utility over cost. The essential point of the rules is
that two underlying heuristics yield global coherence:

9 In buying, each agent passes on as much of the utility it receives as it can and still break
even, based on the buy bids it is offered.

10/05/98 3:10 PM Copyright © 1998, CEC/ERIM. All Rights Reserved. Page 5



Parunak et al., "The MarCon Algorithm"

In selling, each agent demands the lowest price that lets it break even, based on the sell bids
it is offered.

In some cases a constraint can accept any assignment within its bid range, for a price within the
range of prices it originally quoted. In other cases, the ranges reflect the bidding constraint's
uncertainty as to exactly what assignments it can accept and what the associated prices are, and it
can guarantee its price range only if it makes the final choice of assignment. These two classes of
bids are called "any of' and "one of," respectively. All constraints begin bidding in "one-of '
mode, and switch to "any-of' as soon as ranges have narrowed sufficiently that they can make a
meaningful bid on "any-of' terms. A constraint may decline subsets of its bid proposed by its
associates on transactions in which it is in "one-of' mode, but once it moves to "any-of," it must
accommodate their requests.

3.2. What do Variable Agents Do?

A variable agent maintains a market in the assignments to that variable. Its basic functions guide
its constraints in narrowing the ranges of their bids.

Recommend Trimming.-Because the variable knows the assignment ranges, price ranges, and
shapes of the bids submitted by interested constraints, it can recommend how those constraints
should trim their assignment ranges, thus narrowing in on an assignment that is maximally
beneficial to all of them. MarCon defines two trimming heuristics, one for ordinal variables and
another for variables with no natural ordering, as discussed in Section 4 below.

Enforce Protocol.-The variable knows the "one-of/any-of' status of all interested constraints. It
enforces the rule that a constraint can move from "one-of' to "any-of' but not back again. In
addition, an "any-of' bidder can accept a more drastic change in its bid range than can a "one-of'
bidder, and the variable uses its knowledge of each bidder's status to tune bidding
recommendations.

Recommend Direct Negotiation.-Sometimes the variable's heuristics and algorithms cannot
make progress. For example, price or assignment ranges in buy bids may not overlap those in sell
bids, or bid shapes may not support strong recommendations by the variable. In these cases, the
variable recommends that the constraints interact directly with one another to resolve the
stalemate. For automated constraint agents, this interaction might take the form of a richer
negotiation protocol. In our hybrid carbon/silicon environment, it consists of a direct
communication between human designers.

Other Services.-In addition to its basic function of guiding constraint agents in narrowing their
bid ranges, a variable agent provides a number of other services that cannot be discussed in detail
for lack of space.

" At any moment in the process, a given constraint is considering a number of different
variables and their impact on the satisfaction of the constraint. Each variable can compute
various "figures of merit" that its constraints can use to compare the state of problem-solving
with respect to the different variables and select the most important one to consider next. For
example, one variable may offer a much wider price range than another.

" Sometimes a group of variables needs to be traded together. For example, in a design
problem, the torque and RPM of a shaft must both be purchased from the same source, the
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supplier of the (single) shaft. The associated variables can be grouped together to help the
constraints dealwith them as a unit.

Some variables are of interest to multiple buyers, multiple sellers, or both. MarCon defines
methods to integrate the bids from these multiple participants.

3.3. Souq vs. Exchange

Participants in natural markets can communicate costs and utilities in two ways. Markets with
many participants can close frequently on the basis of simple, direct bids, as in a stock exchange
or commodities exchange. When there are fewer participants, they may engage in extended
negotiation (as in a middle eastern souq) before reaching a deal. The current MarCon protocols
follow the latter pattern. They do not require an actual flow of currency, just the propagation of a
cost field (grounded in the suppliers) and a utility field (grounded in the customers) through the
network of designers. Thus there is no need for an initial allocation of currency. Constraints
communicate over sets of possible assignments, and their bids change as the various assignment
ranges shrink. The design is complete when all assignments have converged. If money were to
change hands, it would do so at this point. Changes in the net worth of individual designers as
the result of such "closing dynamics" may help organize the behavior of a design team across
multiple design projects, but we have not exploited it in our current scenarios.

4. Qualitative Representations
Both variables and constraints depend on representations of how prices vary over a set of
alternative assignments to variables. MarCon uses two representations: price shapes for ordinal
variables (those over which a natural total ordering is defined) and price DAG's for nominal
variables (those over which there is no natural ordering).

4.1. Qualitative Trading of Ordinal Variables

Where quantitative details are not available, a constraint communicates its utility (as a buyer) or
its cost (as a seller) for an ordinal variable in terms of a range of possible assignments to the
variable, a range of prices over that range of assignments, and a curve shape indicator (Table 1)
that estimates the qualitative relation between the two. The variable agent computes the
intersection of the assignment ranges of
interest to the constraints. Then, using simple 25 A
linear models of the curve shapes, it estimates Trim Recommendation

the region in which the buyer's price exceeds 20 40

the seller's, and recommends that the
participating constraints trim their assignment 15
ranges to maximize that difference. Price A S I
For example, one constraint bids to buy a 10 Buy e

/given variable with assignment range 2-7,
price range 5-20, and curve shape 'P', and 5,_ ,
another constraint offers to sell the same 0 2 4 6 8 10

variable with assignment range 5-8, price Variable Assignment

range 5-25, and curve shape 'A'. Figure 2
illustrates graphically the range of Figure 2: Resolving Qualitative Bids
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assignments of common interest to the constraints (5-7), simple linear models of utility and cost
over this range, and the shaded subregion over which utility is likely to exceed cost (5-6). The
variable recommends that the participating constraints trim their ranges from the top of this
subregion.

This mechanism is heuristic. One can contrive bid , _,

configurations in which the participants' price or 25

assignment ranges do not intersect, or where (as in Buy

Figure 3) no single trim recommendation can be 20

made. In these cases, the variable recommends A
direct negotiation between the constraints. 15

Price
Furthermore, linear stereotypes of bid shapes only
approximate the actual (and often yet unknown) 10

shape of the price/assignment dependency. In 5 A
practice, the approximations enable constraints 2patc,2 3 4 5 6 7 8 9

(and in our domain, the designers responsible for Variable Assignment

them) to narrow in on the most promising regions Figure 3: A configuration that does notof the search space. gre:Acoigrtnthtdsno
support automatic trimming

4.2. Qualitative Trading of Nominal
Variables

For nominal variables, the lack of a natural ordering precludes the use of a price curve. An
alternative data structure, the price DAG, enables nominal variables to make trimming
recommendations and identify the need for direct interaction.

4.2.1. Price DAG's $500

Each constraint agent interested in a nominal variable
generates a DAG that reflects its preferences, and
specifies an overall price range. Each edge in this "price/Plastic
DAG" originates at the alternative with lower price and
terminates at the alternative with higher price. The Aluminum Steel
constraint agent need not establish a preference between •./

every possible pair of possible assignments, but can begin
by specifying only those preferences that it clearly knows
initially. In the example in Figure 4, the constraint (a Ceramic

buyer) has the highest utility for Wood (not more than $

$500) and the lowest for Ceramic (not less than $300). It
prefers Wood to either of Aluminum or Steel, and both Figure 4: A Buy DAG
Aluminum and Steel to Ceramic, but has not determined
the relative benefit between Aluminum and Steel, or between Plastic and any of the other
materials.

A Constraint Agent offering Material for sale constructs a similar DAG (Figure 5).

Computationally, price DAGs are represented as adjacency matrices. Table 2 shows the
adjacency matrix B for the buy DAG in the example. The sell adjacency matrix is S.
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4.2.2. Support for Trimming

A nominal variable uses the price DAG's to recommend Plastic

which possible assignments may be excluded from further
consideration, by executing the following steps. Steel

1. Close each adjacency matrix by summing all its powers
up to the fixed point and replacing non-zero entries with Aluminum

1. The resulting dominance matrix shows which m, u

possible assignments dominate which other ones either Ceramic

directly or indirectly. B* and S* are the buy and sell
dominance matrices, respectively. Wood

2. Transpose S* to invert the sell DAG, putting low prices
at the top and high prices at the bottom. If two
alternatives are in the same order in B* and (S*)T the Figure 5: A Sell DAG

one with higher utility also has lower cost, and is thus
clearly preferred to the
alternative. Table 2: Adjacency Matrix B for Buy DAG

3. The non-zero cells in Aluminum Ceramic Plastc Steel Wood
J = AND(B*, (S*)T), where Aluminum 0 1 0 0 0
the logical AND is cell-by- Ceramic 0 0 0 0 0
cell, identify orderings that are Plastic 0 0 0 0 0
true of both buyer and seller, Steel 0 1 0 0 0
and define a joint DAG Wood 1 0 0 1 0
(Figure 6) that reflects the
excess of utility over cost. WoodOn the basis of this Wo

particular DAG, the Plastic
variable recommends that
its constraints determine
their relative preferences Aluminum Steel Ceramic
for Plastic and Wood, and
trim from the bottom of Figure 6: Joint Price DAG
the joint DAG. Figure_6:_JointPriceDAG

4.2.3. Support for Direct Interaction

Price DAG's also enable nominal variables to identify a non-overlap condition and provide
information to the constraints that may help them close the gap. A non-overlap can be detected
either because the price ranges specified by the constraints do not overlap, or because the sets of
alternatives included in their price DAG's are disjoint.

Some alternatives may not be directly comparable in the price DAG from one or another of the
negotiating constraint agents. These cases are the non-zero cells in
NOT(AND( OR(S*, (S*)T), B*)). When one constraint provides a preference and another does
not, this mismatch indicates to the second constraint which preferences it should explore further
to advance the overall relaxation.
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The constraints may have opposing preferences for different alternatives. For example, the buyer
may assign a higher utility to wood than to plastic, while the seller assigns a higher cost to wood
than to plastic. Thus the high utility alternative is not the low-cost alternative, and the ordering
information in a joint DAG is not sufficient to identify the alternative with the highest utility in
excess of cost. AND(B*, S*) identifies these cases.

5. Emergence of Global Coherence from Local Decisions
In making their individual decisions, constraint agents seek to maximize the difference between
the utility they realize and the costs they incur, thus providing overall system value of the sum of
individual maxima. The acceptability of the overall solution depends on maximizing the
difference between the sum of the utilities of individual agents and the sum of their costs, a
computation that in general requires central selection of the individual agent choices. This
section shows that subject to appropriate structural restrictions and with specified rules for agent
behaviors, the two approaches give the same result. It also discusses some limitations of the
current formal analysis, which emphasize the importance of the experimental results in Section
6.

5.1. Basic Definitions and Assumptions

We consider the situation
when all bids have collapsed - ... +1

to points, so that only the
base packages have prices
associated with them, and ... 2
those prices are single
points. Assume that thepinetwk frms tatre wthe aFigure 7: Numbering the Constraintsnetwork forms a tree, with a

single customer, with
constraints numbered depth first as shown in Figure 7. The customer is number 0, and each
variable has only one buyer. (We relax this tree assumption below.) For the purposes of this
analysis, the variables serve only to establish the connectivity of the constraints, and are not in
focus in the remainder of this discussion. Thus we will speak of one constraint selling to (buying
from) another, when strictly we should say that one sells (buys) a variable that another buys
(sells).

Table 3 shows how we map Table 3: Tree and MarCon Terminology
our market vocabulary onto Tree MarCon Vocabulary
standard tree terminology. Terminology
The tree terms Node Constraint
"descendant" and
"ancestor" are used in their

usual senses as iterations of Leaf Supplier
"child" and "parent," Node A is a Constraint A sells a variable that constraint B buys
"rschiveld" yn" child of node B (loosely, Constraint A sells to constraint B)
respectively. Node A, is a Constraint A buys a variable that constraint B sells

A node with two or more parent of child B (loosely, Constraint A buys from constraint B)
children is a branch point.
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We will refer to any set of contiguously numbered nodes that does not "
include both a branch-point and its child as a limb. A cut (Figure 8) is a " \
set of nodes such that any path between the root and any leaf includes I
only and only one member of the cut.

Ci is the internal costs experienced by constraint i (that is, costs \ /
experienced by the constraint but not visible as purchases in the network - \ /
being modeled), and Ui its internal utility, so that its net internal cost is
Ci - Ui. All of a supplier's costs, and all of a customer's utilities, are Figure 8: Cuts
internal. The total cost C = , (Ci -U ). (This and other indexed

i>O

operations are over i > 0, excluding the customer, which permits sales to be attributed to every
indexed node.) Let S be price at which constraint 1 sells the system to the customer (constraint
0). Then, system profit P = S - C = S - Y, (Ci - U i ). At the system level, we want to maximize

this difference.

Let Bi, be the sum of the prices of offers to buy make by the ith constraint (the o standing for
"offer" or "out".) Let B1, be the sum of the prices of the received bids to sell to constraint i, that
is, the total amount that constraint i would pay if it bought at the prices offered to it. Similarly,
let Sio be the sum of the prices of constraint i's offers to sell, and S,r be the sum of the prices
offered to constraint i by its buyer. (Even with the tree restriction, there may be more than one
item being traded between a node and its unique parent.) Clearly, if node i and node (i +1) are
members of the same limb, then Si+lo = g,r, and Bi, = Si+lr. If D is the set of immediate
children of node i, BA, = I (Sj,r) and Bi, = I (Sjo).

jED jED

We impose the following bidding rules on the constraints:

Rule 1: Bi'o ý- Si,, - Ci + Ui

Rule 2: Sio <- Bi,r + Ci +Ui

That is, in formulating buy bids, each constraint passes on as much as it can of the money it
receives and still break even, based on the buy bids it is offered. In formulating sell bids, it sells
for the lowest price it can and still break even, based on the sell bids it is offered.

Finally, we define value added for constraint i to be Vi = Si,r - (Bi,r + Ci - Ui). We want to

determine the relationship between the sum of the value added across all constraints, and the
system profit.

5.2. The Basic Result

First we need:

Lemma 1: Vi = Si,, -Si,o = Bi,o -Bi, r

Proof.- The equalities are obtained by substituting Rule 1 and Rule 2 into the definition of value
added. 0
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Lemma 2: Si,0 = • (Cj - Uj ), for j a descendent of i (including i).
J

Proof: Clearly this is true for leaf nodes (suppliers). Suppose it is true for all the descendants of
node i. Then, node i arrives at Si'o by adding its internal costs and subtracting its internal utilities,

so it is true for i. 0

Now, we can state:

Theorem 1: The sum of the values added for the nodes in any cut is equal to the system profit.

Proof (for the special case of trees): This is clearly true for the cut consisting only of constraint
1, since for this node (by Lemma 2) the offering sales price is the sum of the costs, and the
received sales price is what the customer will pay. Now suppose it is true for a given cut. Move
the cut "closer to the leaves" by replacing one member, sayj, of the cut with its child or
children. If there is only one child, the value added is the same, by Lemma 1. If there are
multiple children, let us call them the set D. Then, IV 1 = I (Sj,r - Sj,o) = Bio - Bi,r = Vi. El

jo D jGD

5.3. Relaxing the Tree Restriction

In real constraint problems, it is often the case that the constraints do not fall naturally into a tree.
We relax our tree assumption in two steps. First, we convert the tree into a semi-lattice by
allowing any constraint to sell to another constraint (i > 0) iff the second constraint is not "farther
from the customer." That is, there can be no loops in the digraph, but all other connections are
allowed. Later, we will add loops.

5.3.1. Allowing a Semilattice

The semi-lattice has a unique least upper bound (LUB, node 1), but will normally not have a
lower bound. The restriction i > 0 implies that the customer buys only from constraint 1, and is
imposed so that Sir and Si, are defined uniformly for all nodes at or below the LUB.

Converting to a semi-lattice has two effects. First,
there may be nodes that cannot be part of any cut,
for example node 9 in Figure 9, because any cut
that severs the paths through the direct arc from 10 ... 10 9 8 ...

to 8 must also sever every path through 9. A
similar situation arises when multiple leaf nodes
differ in the number of steps that separate them Figure 9: A Semi-Lattice with No Cut
from their LUB. We correct such situations by
introducing "virtual nodes," such as 9a in Figure
10. Virtual nodes have no costs associated with 9a

them, but otherwise behave like real nodes; their
only function is ensure that every node can be part 909...

of a cut, and therefore that the idea of "moving a
cut one step" is well defined. Figure 10: Inserting a Virtual Node

The other problem is that Lemma 2 is no longer
valid, since not all the costs of the descendents (or inferiors, to switch to lattice terminology)
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need be represented in a given ancestor's sales price. However, we do have a slightly more
complex equivalent:

Lemma 3: For any cut E with collective descendants F, E cF, ESj,o = X(Ck -Uk)"

jGE kEF

Proof.- This is clearly true for the cut consisting of all the leaf nodes. Now, assume it is true for a
given cut. Move that cut one step toward node 1. This move may replace a single node with a
single ancestor, a single node with several ancestral nodes, or several nodes with a single
ancestor, the ancestors being in each case immediate. Let the replaced nodes be G and the new
nodes H. In each case, Z S 0,o = Y Sk,o + Y, (C1 -Uj ). Hence, the statement will remain true,

jcH keG jEH

and is true of every cut. 0

In particular, Lemma 3 is true of the cut consisting of node 1. Hence, we have a starting point
for reproving Theorem 1, and we can move the cut toward the leaves stepwise as in Lemma 3 to
reprove Theorem 1 for the case of lattices.

5.3.2. Allowing Loops

Now, consider what happens when we add loops: a buyer (in our design domain, often but not
necessarily node 1) sells to a node farther from node 0 than itself. A simple insight shows that
this case is isomorphic to the previous one (the semi-lattice). That is: a sale from A to B at price
P is the same as a sale from B to A at a price -P. From a structural perspective, any structure
with loops can be reduced to a semi-lattice by permitting some sales to have negative prices, and
the proof schema used for trees and semi-lattices can then be applied.

5.4. Practical Implications
The formal development outlined in the previous sections has two limitations, both based on the
observation that the critical variables in the discussion (B ,,, Bi,r, Si,o, Si,r, Ci, and Ui) are
functions over the set of variables in which the agent has an interest, evaluated at the point when
the agents' ranges on variables have collapsed.

First, while we have proven that the prices will yield a system optimum when the ranges
collapse, we have not proven that the ranges can in fact collapse with Rules 1 and 2 in force.
That is, we have not shown that it will always be possible for constraints to bid consistently with
these rules. Formal exploration of the dynamical behavior of the algorithm in general and its
convergence properties in particular remains for further work. In practice, we have found that the
system does converge on the examples to which we have applied it.

Second, agents do not know in advance the point to which their variable ranges will collapse, and
so cannot apply Rules 1 and 2 exactly. In describing the behavior of constraint agents in Section
3, we summarized two heuristics that approximate these rules:

1. In buying, each agent passes on as much of the utility it receives as it can and still break
even, based on the buy bids it is offered.

2. In selling, each agent demands the lowest price that lets it break even, based on the sell bids
it is offered.
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Again, our response is an empirical one: these approximations to the formally verified rules yield
reasonable results in the problems to which we have applied them.

6. Experimental Results
One motivation for MarCon is the need to support a mix of human and artificial agents. To date,
the system has only been implemented in such settings, with human constraint agents and
computerized variable agents. The wide range of decision-making algorithms used by humans in
such a setting makes systematic experimentation difficult and reduces the significance of
comparison with fully automated constraint optimization methods. One of our experiments does
illustrate the potential of the approach. A team of five designers designed a power transmission
mechanism, a problem that is often used as a class assignment in university design curricula.
Human agents represent the electric motor that provides rotational power (constrains 7 of the 23
system variables), the transmission that reduces that power to the customer's requirements (10
variables), a box to hold the motor and transmission (11 variables), the customer's demands for
the overall system (7 variables), and overall system weight (4 variables). Twenty-three
computerized markets represent the system variables.

Figure 11 illustrates the convergence of one system variable (horsepower between the motor and
the transmission) during the course of the experiment. The motor is able to narrow its initial sell
bid without an offer to buy from the transmission, on the basis of bids in other markets. The
transmission's offer to buy cuts the range to about a third of its original size. The subsequent sell
bids by the motor and the final collapse to a single assignment appear unilateral, but in fact are in
response to buy bids from the transmission in other related markets (RPM and torque). The graph
shows the convergence that MarCon supports, and the lack of alternation between buying and
selling in this particular market emphasizes the interaction of different variables that the
constraints couple together.

The motor and transmission designers select from predefined catalogs of components with 23
and 22 alternatives, respectively, while the box designer selects one of three materials and
defines each of the box's three dimensions as a real number. Thus, even ignoring the real-valued
box dimensions, the design space includes 23*22*3 = 1518 possible independent choices. In a
brute-force distributed implementation, one might broadcast all of these possible configurations
to the design team for review and comment, resulting in a total communicative load on the order
of (1518 configurations + 5*1518
comments = 9000) messages and a HPM-T
need for each agent to process 5* 1518
= 7500 messages (the original 3.5

configuration and the responses of the 3
2.5 4

other four agents). If we assume2.
something smarter than brute-force
distribution, these estimates would 1.5

1 -
decrease, but if we include the real- 0.5valued variables of box dimension 0.

and weight, they would greatly sell sell buy sell sell sell

increase, so they provide a useful
rough benchmark.

Figure 11: A sample history of MarCon bids
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The team converged on a solution after posting only 145 separate bids. In this example, all bids
were between only two agents. Thus MarCon's communication requirements are on the order of
2% of the benchmark, and each agent has to process only an average of 2*145/5 = 58 messages,
or less than 1% of the benchmark. Although we do not claim that MarCon is formally optimal, in
this case subsequent exhaustive search of the design space showed that the team did in fact
converge to the global optimum. What is perhaps most important in our domain is that MarCon
realizes these efficiencies while supporting implicit constraints and set-based reasoning in a
hybrid carbon-silicon community as discussed in Section 2.1 above.

<<<Note to editor and reviewers: On Oct. 23, a group of graduate students in UM's NAME
dept. will be applying RAPPID to a more complex design problem, an exercise in ship design.
This experiment is being designed to yield further quantitative information on the convergence
properties of MarCon, and this section can easily be extended to incorporate those results when
they are available.>>>

7. Relation to Other Research
MarCon bears comparison with other research in three areas: agent-based design support,
distributed constraint optimization, and market-based programming.

7.1. Agent-Based Design Support

MarCon itself is not a design system, but it arose in the context of the RAPPID system for
distributed design support, and design continues to be a natural domain to which to apply
MarCon. The comparisons with other research in this section are in terms of the parent RAPPID
system.

It is convenient to summarize research in agent-based design environments by how each system
decomposes the problem into agents. Five approaches are common: agents may be mapped onto
features, parts, designers, design tools, or design functions. We first review these categories, and
then compare RAPPID with the systems that are most similar to it to make clear the
contributions it offers. The projects classified here are representative rather than exclusive, but
do include the projects most directly comparable with RAPPID.

The vision of systems instantiating features (such as a hole or a wall) as agents is that a designer
can identify the features required on a part, and those features will negotiate among themselves
to discover a mutual organization that satisfies functional and manufacturing constraints. Such
systems (e.g., [3, 9]) attempt to apply agent technologies to the long tradition of research into
feature-based design (e.g., [16]).

Systems that represent individual parts as agents (e.g., [8, 25, 26] recognize the growing
popularity of the Internet as a medium over which product vendors offer their goods, and
develop mechanisms to help designers quickly locate and evaluate components in on-line
catalogs that will satisfy their requirements. ActiveCat [26] focuses on attaching semantic
information and simulation models to catalog entries, so that designers can "try before they buy."
ACME [8] propagates constraints among individual catalogs (each represent a set of alternative
parts) and among different hierarchical levels of product structure. Both catalogs and constraints
are agents in this system. The preferences of ACME become an actual market model in [25], in
which the various components bid among themselves for the assignments they can make to their
attributes.
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Many design problems cannot be solved by configuring pre-existing parts from catalogs, but
require designers to create the necessary components and their interfaces. In this situation, it is
natural to support the individual (human) designers or design teams with (computerized) agents.
The decomposition is similar to the part-based approach, since each designer or design team is
typically responsible for a specific component, but the inferencing task is more difficult. Instead
of checking the consistency among existing members of a discrete set of components, the system
must guide designers in creating new components, whose attributes may be drawn from an
infinite set (e.g., rational numbers) or even a non-ordered set (e.g., material). This decomposition
is the one addressed by RAPPID, which uses a set-narrowing heuristic to avoid conflicts. [10, 11]
also supports designers as agents, using conflict resolution heuristics to deal with conflicts after
they arise.

In many problem domains, the design process is dominated by complex tools (such as finite-
element codes for mechanical design, or circuit emulators for microprocessor design). These
tools are typically configured for stand-alone use, and coordinating several of them on a multi-
disciplinary project can be challenging. Systems such as PACT [7], SBD [61, and the blackboard
support for RRM [12] treat design tools as the fundamental agents and use multi-agent
techniques to coordinate their use.

The philosophy of functional decomposition, common in traditional monolithic software design,
survives in some agent architectures for design. DICETalk [22] recursively divides design tasks
into subtasks and assigns them to general problem-solving agents with access to task-specific
knowledge bases. SiFA [4] is a variety of the A-Team architecture [24], with different species of
agents for such functions as selecting a possible assignment to a design parameter, evaluating an
assignment, identifying conflicts among assignments, and recommending resolutions to conflicts.

RAPPID is motivated by the challenge of distributing design across physically and
organizationally separated design teams, each responsible for some component or subsystem of
the overall product. This requirement strongly recommends an architecture that decomposes the
problem into agents representing designers or the parts that they design. Each agent can then be
local to a specific organization, managing that organization's communications with the outside
world and encapsulating the high bandwidth communications within the organization. This
decomposition means that RAPPID bears most immediate comparison with the part-centric and
designer-centric systems identified above. Systems focused on features, design tools, and design
functions are largely orthogonal to RAPPID's objectives.

RAPPID's set-based dynamics offer a fundamental contrast to Klein's approach [10, 11]. Klein
sees conflict as central to design, and so provides mechanisms primarily for the resolution of
conflicts after they arise. RAPPID recognizes conflicts as a symptom of a defective design
philosophy, one that jumps prematurely to point solutions. Its mechanisms focus on ways for
designers to balance preferences before they make conflicting decisions, rather than resolving
conflicting desires afterwards. RAPPID recognizes that conflicts are sometimes unavoidable, and
helps its participants identify them so that they can resolve them through SLOWh mechanisms
(which might in some cases include systems embodying Klein's mechanisms). However, it
devotes its major effort to avoiding such conflicts in the first place.

Among the part-based systems, ActiveCat [26] is complementary to RAPPID rather than
competitive with it. When a designer in RAPPID is dealing with off-the-shelf parts, ActiveCat is
a natural mechanism for storing and consulting the specifications of those parts, and could
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provide much of the functionality that RAPPID prototypes in its spreadsheet interface. In turn,
RAPPID's market mechanisms have no counterpart in ActiveCat. The preference functions of
ACME [8] and the market formalization of [25] bear much more similarity to RAPPID. However,
these systems are not set-based, but presume that the components of the design are defined in
advance, a luxury that is not available in many industrial design scenarios. They are both fully
automated systems that require formal models of components and subsystems, another
requirement that is difficult to realize in many industries. Where RAPPID treats a component as
the instantiation of a constraint among design attributes, ACME distinguishes constraints from
components. Thus RAPPID can begin work as soon as the components and their attributes are
enumerated and attributes of interest to more than one component are identified. ACME requires
an additional level of knowledge engineering to specify the constraints among components. This
task often requires solving the most vexing design problems, and so asks the system analyst to do
much of the designers' work in advance.

7.2. Distributed Constraint Optimization

Early work in distributed constraint management focuses on distributed CSP, and assigns subsets
of the variables to each agent [23, 28]. Each agent monitors all the constraints in which its
variables are involved. The assumption that variables are the most natural mapping for agents
persists as recently as [ 1, 27]. In many domains it makes sense to assign computational ability to
constraints rather than to variables, an approach taken in [14], where subsets of related
constraints are assigned agenthood. In both approaches, each agent represents one or more
variables (or alternatively, constraints), uses traditional centralized techniques among those
elements, and coordinates with other agents to identify inconsistencies and backtrack as
necessary.

Liu and Sycara [15] extend the application of constraint agents from constraint satisfaction to
constraint optimization. They classify constraints as either hard and soft and relax soft
constraints as necessary to maximize some overall objective function. Monitoring a global
objective function is difficult in a distributed system, but in some problems the constraints vary
widely in the degree to which they impact the value of that function. In such domains, high
disparity metrics identify anchor constraints whose local costs are a reasonable estimator of the
global costs. A showcase example is shop floor scheduling, in which utilization levels at
bottleneck workstations have much higher impact on manufacturing costs than do utilization
levels at other workstations. The agent representing an anchor constraint takes a leadership role
among other agents interested in the same variables, and uses its local costs to guide its decisions
(and thus theirs as well). Armstrong and Durfee [1] are one example of recent work with variable
agents (in this case, in DCSP) that similarly seeks ways to establish the relative priority of the
agents to guide the search process.

In an approach inspired by naturally occurring ecologies with multiple interacting species of
agents [17], MarCon elevates both variables and constraints to the status of autonomous agents.
Many distributed problems offer neither natural priorities among agents, easy access to a global
objective function, nor distinguished anchor constraints. MarCon copes with such situations by
using a marketplace to propagate information asynchronously and omnidirectionally among
agents.
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7.3. Market-Based Programming

Most work in market-based programming, including Wellman's pioneering work on
configuration-based design [25], is based on an economic model defined by the nineteenth-
century economist Leon Walras. In Walrasian economies, a centralized auctioneer collects bids
from the participants, computes the price at which global supply equals global demand, and then
reports this price to the participants. In such an economy, no trades take place until the
auctioneer derives an equilibrium price. For economies with multiple commodities, Wairas
defined an incremental mechanism, tatonnement, in which the auctioneer moves from one
commodity to another, adjusting the price so that supply equals demand. Because the price of
one commodity may affect the demand for others, the auctioneer typically must cycle through
the list of commodities several times before prices converge.

The Walrasian model is analytically tractable, and so has been the subject of considerable
theoretical study. However, it has several disadvantages. Its centralization is contrary to the
distributed spirit of agent-based architectures and the practical requirements of many modern
business environments. It implies universal information about prices and demands, which is
unrealistic. Furthermore, in an economy involving multiple commodities, computation of a
Walrasian equilibrium is NP-complete.

These shortcomings have led to a renewed interest in an alternative economic model known as
"bilateral exchange" or (after its nineteenth-century economic proponent) "Edgeworth barter"
[2]. In this approach, individual pairs of agents meet, and trade if they can find a price at which
both participants improve their individual utility. There is no need for a central auctioneer.
Agents do not require global information, and trade can take place before prices have stabilized
globally. As agents engage in trade with different partners, price information propagates through
the community. While bilateral exchange has less of an analytical literature than Walrasian
auction, Lyapunov analysis shows the existence and stability of convergence, and under
manageable assumptions the result is Pareto optimal. Both the equilibrium location and the final
distribution of wealth over agents depend on the actual trajectory followed by the system, but the
convergence can be achieved in time linear in the number of agents and quadratic in the number
of commodities.

MarCon was not developed explicitly from either of these models, but shares intuitions from
each of them, and sometimes deviates from them both. As in a Walrasian model, constraint
agents do not trade pairwise, but through a variable agent, who may be viewed as an auctioneer.
However, this auctioneer manages only a single commodity, and so cannot engage in
tatonnement. Instead, it seeks convergence by guiding the incremental shrinkage of price ranges,
a dynamic not explicit in either Walrasian or Edgeworth models. As in pairwise exchange,
constraint agents can make local decisions without waiting for the system to reach a global
equilibrium. MarCon's deferral of any actual transfer of funds until the system converges has a
decidedly Walrasian flavor, but in fact by the time such a transfer takes place, the market
mechanisms have already served their purpose of coordinating the actions of the different agents.
In MarCon the market is used more for its side effects than for the actual exchange of currency
for commodity (its main function in both Edgeworth and Walrasian models). Over a time
horizon longer than a single problem, for instance among design teams involved in multiple
projects, the movement of currency among constraint agents may very well have an important
integrating effect. But our analysis and examples give us no information on this dynamic.
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8. Conclusion
MarCon advances both market-oriented programming and constraint programming.

" It offers a systematic way to apply market mechanisms to a wide class of constraint
problems. Thus it moves the application of these mechanisms from a research problem
toward an engineering discipline.

"* It provides a truly distributed way to solve constraint problems, and one that does not require
a priori knowledge of anchor constraints that dominate the problem.

MarCon exploits the physical structure of a problem, including realized constraints and causal
pressures. It is particularly attractive in domains that require close integration between carbon
and silicon intelligence, and in applications where evaluation of the utilities faced by individual
constraints is costly and time-consuming and must be justified on a step-by-step basis as
problem-solving progresses.
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